Weighted density functional theory for simple fluids: supercritical adsorption of a Lennard-Jones fluid in an ideal slit pore.

نویسنده

  • M B Sweatman
چکیده

The adsorption of a Lennard-Jones fluid in an ideal slit pore is studied using weighted density functional theory. The intrinsic Helmholtz free-energy functional is separated into repulsive and attractive contributions. Rosenfeld's accurate fundamental measure functional is employed for the repulsive functional while another weighted density functional method is employed for the attractive functional. This other method requires an accurate equation of state for the bulk fluid and an accurate pair-direct correlation function for a uniform fluid, determined analytically or numerically. The results for this theory are compared against mean-field density functional theory and grand canonical ensemble simulation results, modeling the adsorption of ethane in a graphite slit. The results indicate that the weighted density functional method applied to the attractive functional can offer a significant increase in accuracy over the mean-field theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE DENSITY PROFILES OF A LENNARD -JONES FLUID CONFINED TO A SLIT

The structure of fluids confined by planar walls is studied using density functional theory. The density functional used is a generalized form of the hypernetted chain (HNC) functional which contains a term third order in the density. This term is chosen to ensure that the modified density functional gives the correct bulk pressure. The proposed density functional applied to a Lennard-Jones...

متن کامل

Effects of confinement on critical adsorption: absence of critical depletion for fluids in slit pores.

The adsorption of a near-critical fluid confined in a slit pore is investigated by means of density functional theory and by Monte Carlo simulation for a Lennard-Jones fluid. Our work was stimulated by recent experiments for SF6 adsorbed in a mesoporous glass, which showed the striking phenomenon of critical depletion, i.e., the adsorption excess Gamma first increases but then decreases very ra...

متن کامل

Lennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory

By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT)  based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...

متن کامل

A density-functional theory for bulk and inhomogeneous Lennard-Jones fluids from the energy route

A new density-functional theory is developed for representing the structural and thermodynamic properties of Lennard-Jones fluids by unifying the modified fundamental measure theory for the short-range repulsion and the first-order mean-spherical approximation ~FMSA! via the energy route for the attractive part of the intermolecular potential. This theory significantly improves the conventional...

متن کامل

A New Method to Calculate the Absolute Amount of High-Pressure Adsorption of Supercritical Fluid

In the paper we developed a new method to determine the absolute amount of adsorption. This method relies on the excess adsorption isotherm and the density profile in the pore of one material. To compute the density profile and decrease complex calculation of obtaining the absolute amount of adsorption we introduced Simplified Local-Density (SLD) model. A few of appropriate parameters were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 63 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001